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Abstract
The far-field spectral properties for a broad-band Gaussian spectrum incident on a double slit
with a movable central part are investigated. The analytic expression is first derived and some
numerical examples based on it are given to illustrate the anomalous behavior of the diffracted
spectrum. It is found that the important effect called spectral switches can be controlled by
simply moving the central part of the double slit. This control mechanism has the merit of
easier implementation than previous schemes which modulate some properties of the light
source (e.g. spatial coherence or spectral bandwidth) to achieve it.

Keywords: singular optics, spectral switches, double slit with movable central part, Gaussian
spectrum, Fresnel–Kirchhoff diffraction integral, red-shift, blue-shift

1. Introduction

Spectral anomalies [1–6], which are caused by the diffraction
of an aperture for a polychromatic light source (or broad-
band pulses), lately have gained more interest for their
different applications such as lattice spectroscopy [1] or
spatial-coherence spectroscopy [3]. In the past, the spectral
switch phenomenon has been attributed to the singular optics
effect, in which drastic spectral changes take place near some
singular points with zero amplitude [5–7]. However, one of
the present authors has shown that the spectral switch can exist
without the phase singular points and the correct relationship
between them was clarified [2]. It is found that the singularities
are only the sufficient condition for the spectral switch and
that the necessary condition is the oscillatory behavior of the
modifier function. In this paper spectral switches with and
without the singular points can both be found, and this is
the first case to our knowledge. A way to utilize spectral
switches for digital information and transmission in free space
has been proposed [6]. Usually the ‘internal mechanisms’
which modulate either the spectral bandwidth or the spatial
coherence of the light source are used to control the switch,
but this is not an easy task [6]. In this paper, an easy scheme

3 Author to whom any correspondence should be addressed.

to control the spectral switch is suggested. We will show that
it can be controlled by simply moving the central part of the
aperture, which is referred to as the ‘external mechanism’.
Some of the predicted spectral switch effects have been verified
experimentally [8–10].

2. Theory

Consider that a spatially completely coherent light, with a
spectral scalar field U ′(p′, ω) is incident from the left upon
double slit with a movable central part, as indicated in
figure 1(a). This double slit has width 2a with a movable
central obstruction (dimension a) which is centered at (ξ, 0)
of the incident plane, as shown in figure 1(b). Consequently,
the light wave will be diffracted and arrive at the observation
(or detection) plane at (x, y, z) in the far-field. The diffraction
field U(p, ω) on that plane can be obtained by the Fresnel–
Kirchhoff diffraction integral [11] as

U(p, ω) = 1

jλ

∫ ∫
�′

U ′(p′, ω)
exp(jωr/c)

r
χ(θ) dσ ′, (1)

where χ(θ) is the obliquity factor, λ is the wavelength, ω is
the angular frequency, c is the velocity of the light wave, and r
is the distance from point p′(x ′, y ′, 0) on the aperture plane
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(a)

(b)

Figure 1. (a) Basic geometry. An incoming light wave from the left is incident on a double slit with a movable central part. (b) Dimensions
and structures of the double slit. The movable central part is centered at (ξ, 0).

to point p(x, y, z) on the observation plane. As plotted in
figure 1(a), the coordinate systems x ′o′y ′ and xoy are used for
the incident (aperture) plane and the observation (detection)
plane, respectively. In the integral of equation (1), the notation
�′ is the aperture function and dσ ′ is the integration to it. Due
to the symmetry property along the y ′ axis in our optical setup,
we can limit our discussion along x ′, choose the observation
point p along x without losing generality and designate θ

as the angle between o′ p and optical axis o′o as shown in
figure 1. Equation (1) is usually used for a monochromatic
incident field, but it is also applicable for a broad-band pulse
or polychromatic field [12], which can be superposed by a
monochromatic field via the Fourier integral.

The aperture function in figure 1(b), which represents the
limited area of incoming light, can be written as

g(x ′) = 	

(
x ′

2a

)
− 	

(
x ′ − ξ

a

)
, |ξ | � 0.5a (2)

where 	(x ′) is the rectangular function defined as 	(x ′/2a) =
1 for |x ′| � a and 	(x ′/2a) = 0 for |x ′| > a; and the second
term in equation (2) is the central obstruction. The Fourier

transform of this aperture function F(g(x ′)) is

F(g(x ′)) = a{[2sinc(2aπ fx)] − [sinc(aπ fx)]
× exp(−j2π fxξ)}, (3)

where the sinc function is defined as sinc(x) = sin(x)/x ; fx is
the spatial frequency variable. It is assumed that the incident
spectral scalar field U ′(p′, ω) is spatially completely coherent
light consisting of a single line of Gaussian profile, centered at
angular frequency ω0 with room mean square (rms) bandwidth
�; that is,

U ′(p′, ω) = exp{−[(ω − ω0)]2/2�2}. (4)

Using r � [z2 + (x − x ′)2]1/2 ≈ z + [(x2)/2z] − (xx ′/z) for
the far-field approximation and substituting equation (4) in (1),
the diffraction field U(p, ω) can be obtained as [13]

U(p, ω) = 1

jλz
exp

[
jk

(
z + x2

2z

)]
U ′(p′, ω)F(g(x ′)), (5)

where the wavenumber is written as k = ω/c = 2π/λ and
the last term F(g(x ′)) is the Fourier transform of the aperture
function g(x ′) in equation (3) with the spatial frequency fx =

2
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Figure 2. Spectral intensity of I1(0, ω) ∝ ω2G(ω) on axis (θ = 0)
for two different bandwidths � = 0.3ω0 and 0.6ω0. The spectrum is
always blue-shifted. As the bandwidth γ increases, the amount of the
peak’s shift increases. (Each curve is normalized to its maximum
value.)

x/λz. Substituting equations (3) and (4) into (5), and using the
equalities 1/λ = ω/2πc, we have

U(p, ω) = a

jz

( ω

2πc

)
exp

[
jk

(
z + x2

2z

)]

× exp{−[(ω − ω0)]
2/2�2} · {[2sinc(2aπ fx)]

− [sinc(aπ fx)] exp(−j2π fxξ)}. (6)

With the relations sin θ � x/z and fx= ω · x/2πcz =
ω sin(θ)/2πc, the spectral intensity I (θ, ω) along the x axis
with angle θ can be obtained through I (θ, ω) = |U(p, ω)|2 =
U(p, ω)U(p, ω)∗ as

I (θ, ω) = Aω2 exp{−[(ω − ω0)]2/�2}
×{4[sinc2(aω sin(θ)/c)] + [sinc2(aω sin(θ)/2c)]
− [4sinc(aω sin(θ)/c)sinc(aω sin(θ)/2c)

× cos(ξω sin(θ)/c)]} ≡ AG(ω)M(θ, ω), (7)

where A = a2/(2πcz)2. G(ω) = exp{−[(ω − ω0)]2/�2}
is the spectrum of the incident light source, as derived
in equation (4) due to G(ω) = |U ′(p′, ω)|2, and
M(θ, ω)=ω2{4[sinc2(aω sin(θ)/c)]+[sinc2(aω sin(θ)/2c)]−
[4sinc(aω sin(θ)/c)sinc(aω sin(θ)/2c) cos(aξ · sin(θ)/c)]} is
called the modifier function. As indicated in equation (7),
this modifier function illustrates how the spectrum of the light
is modified (or modulated) as a result of diffraction at the
aperture with a movable part. Equation (7) is used to give
some numerical examples below, which characterize spectral
anomalies (e.g. red-shift, blue-shift, spectral switches, etc)
under different situations.

3. Numerical results of spectral intensity distribution

In section 3.1, we first discuss how the spectral intensity
distribution changes at different observation positions along

the x direction (or equivalently the angle θ ). In section 3.2,
the spectrum influenced by the movable central part is
investigated and the scheme to perform its potential application
in information encoding and transmission is introduced.

3.1. Spectral intensity distribution at different observation
positions

For a double slit with the central part fixed at a position, the
modifier function M(θ, ω) depends on the observation angle θ ;
thus the spectral intensity distribution will change accordingly
with the location. Two different cases (on axis and off axis) are
discussed separately.

3.1.1. Spectral intensity distribution when θ = 0 (on axis).
When the observation point p is exactly at the center o of the
observation plane (figure 1), the angle θ = 0 is held. Therefore
the equalities sin(θ) = 0 and sinc(0) = 1, can be substituted
into equation (7) to give the spectral intensity at θ = 0 as

I (θ = 0, ω) = I1(0, ω) = Aω2G(ω). (8)

It is found from the above equation that G(ω) now is modified
by a simple function M(θ = 0, ω) = ω2, as shown in figure 2
for two different values of �. The peak of diffracted spectrum
I1(0, ω) is always blue-shifted and its amount relates to the
bandwidth �. The amount of shift increases as the bandwidth
� rises, as in figure 2. The maximum of the spectral intensity
is at ωmax I = 1/2[1 + (1 + (2γ )2)1/2]ω0, and the amount of
shift is 
ω = ωmax I − ω0 = 1/2[(1 + (2γ )2)1/2 − 1]ω0. This
behavior, in which the incident spectrum G(ω) is modified by
the ω2 term at θ = 0 can also be found in other works with
different aperture structures [14, 15].

3.1.2. Spectral intensity distribution when θ �= 0 (off axis).
When the observation point p is not on the optical axis z(θ �=
0), we can plot the behavior of the spectral intensity with
equation (7). Since from equation (7) the resultant spectrum
I (θ, ω) is the product of the incident spectrum G(ω) and the
modifier function M(θ, ω), the behavior of I (θ, ω) can be
discussed separately according to the different properties of
M(θ, ω) as the following.

(a) Smooth movement of the spectrum peak. Let the detection
angle start from sin(θ1) = 3.0×10−4 for typical parameter
values such as ω0 = 3 × 1015 rad s−1, a = 1.0 mm, ξ =
0.3 mm and � = 0.2ω0; these values are used in all the
following numerical examples unless specified otherwise.
At this angle, as shown in figure 3(a), the modifier function
is an increasing function of frequency in the neighborhood
of ω0, thus the peak of I (θ, ω) ∝ G(ω) · M(θ, ω) is
shifted toward higher frequency; i.e., it is blue-shifted.
For an larger angle at sin(θ2) = 4.4 × 10−4, M(θ, ω)

is peaked at central angular frequency ω0, as shown in
figure 3(b). Since G(ω) is a symmetric function of ω and
also has its maximum value at ω = ω0, the peak of the
diffracted spectrum I (θ, ω) also occurs at this frequency.
Thus the peak of the diffracted spectrum is unshifted as
compared with the incident spectrum G(ω). Next, the
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Figure 3. Normalized spectral intensity for I (θ, ω) (solid line),
G(ω) (dotted line), and M(θ, ω) (dashed line) at different angles.
(a) sin(θ1) = 3.0 × 10−4. (b) sin(θ2) = 4.4 × 10−4.
(c) sin(θ3) = 5.6 × 10−4. For all the following figures, the same
curve styles are used consistently.

angle can be increased further to sin(θ3) = 5.6×10−4, and
as shown in figure 3(c) the modifier function at this angle
is a decreasing function of frequency in the neighborhood

Figure 4. Normalized spectral intensity for I (θ, ω), G(ω), and
M(θ, ω) at different angles. (a) sin(θ4) = 6.2 × 10−4.
(b) sin(θ5) = 6.305 × 10−4. (c) sin(θ) = 6.5 × 10−4. The small solid
dots in the plots indicate the positions of the maximum of the
spectrum.

of ω0, thus the peak of I (θ, ω) is shifted toward lower
frequency; i.e., it is red-shifted.

(b) Sudden change of the spectrum peak (spectral switch).
If the angle keeps increasing to sin(θ4) = 6.2 × 10−4,
as shown in figure 4(a), the main (left) peak of I (θ, ω)
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Figure 5. Plot of the normalized frequency shift � as a function of
sin(θ) for the parameter values ω0 = 3 × 1015 rad s−1, a = 1 mm,
ξ = 0.3 mm and γ = 0.2. The six angles indicated on the x axis
from θ1 to θ6 marked with ‘×’ correspond to the picked angles for
figures 3(a)–(c) and figures 4(a)–(c) respectively. It is found that at θ2

there is no shift for the spectrum’s peak (� = 0 as in figure 3(b)) and
at θ5 there is a discontinuous jump (spectral switch) as in
figure 4(b).

is still red-shifted, but the height of the right peak also
increases, as compared with figure 3(c). The small solid
dots in the plots indicate the position of the maximum of
the spectrum. Next, for a little bigger value of sin(θ5) =
6.305 × 10−4, figure 4(b) shows that the two peaks reach
the same height. This critical angle is called θs and the
subscript means the spectral switch. As illustrated on
the figure, the two peaks are divided by a phase singular
point (marked with a small circle on the horizontal axis
near ω = ω0), and at this frequency the amplitude of the
spectrum is zero, which makes the phase there singular.
However, it will be shown in section 3.2 that the equal
heights for the two peaks can appear without resorting
to the singular point. When the value of θ increases a
little to sin(θ6) = 6.5 × 10−4, figure 4(c) shows that
the right peak now is the main peak and the blue-shift
occurs. This demonstrates the existence of the spectral
switch at θs and the spectral shift has a sudden change
(in (c)) from red-shift (in (a), θ < θs) to blue-shift (in
(c), θ > θs) in the vicinity of θs. For better explaining
the behavior of spectral behavior from above discussion,
the normalized frequency shift concept is used and
defined as

� = (ωp − ω0)/ω0, (9)

where ωp is the frequency at which the diffracted spectrum
peaks. This quantity is plotted as a function of sin(θ)

in figure 5 and the angles indicated on the x axis from
θ1 to θ6 marked with ‘×’ correspond to those angles for
figures 3 and 4. It is obvious from this plot that at θ2

(see figure 3(b)) there is no shift for the spectrum’s peak
(� = 0), and near θ5 (or θs) (see figure 4(b)) there is a
discontinuous jump for � (spectral switch) from red-shift
(figure 4(a)) to blue-shift (figure 4(c)).

Figure 6. Normalized spectra for G(ω) and I (θ, ω) for different
movement amounts of the central part. (a) ξ = 0.3 mm.
(b) ξ = 0.29 mm. (c) ξ = 0.31 mm. It is found that in (a), I (θ, ω)
splits into two peaks with equal heights and the peak is blue-shifted
(b) or red-shifted (c) by slight movement of the central part to the left
or right respectively.

3.2. Spectral switch control by the movement of the central
part

Now we can consider how the diffracted spectrum is affected
by the movement of the central part of the double slit with
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Figure 7. Illustration for the data encoding and information
transmission by controlling the movement of the central part. The
blue-shift (B, for short) is associated with a bit of information such as
‘1’ and the red-shift (R, for short) is associated with a bit of ‘0’.

equation (7). Due to the complicated form and behavior of
the modifier function M(θ, ω) in equation (7), it is found
that at some particular angle (e.g. sin(θ) = 1.535 × 10−3

in figure 6(a)) M(θ, ω) can again redistribute I (θ, ω) into
two peaks with equal heights, but without the singular point
between them. Comparing figure 6(a) with 4(b), it is found
that the singular point is not always needed for the spectral
switch. However, the oscillatory behavior of M(θ, ω) shows
up in both cases, and this is why the authors claim that the
oscillating property of the modifier function is the real cause
and the necessary condition for the spectral switch [2]. Under
this situation, the central part is moved slightly from its original
position (ξ = 0.3 mm) to the left (ξ = 0.29 mm) or to the
right (ξ = 0.31 mm) and the spectral intensity is plotted in
figures 6(b) and (c) respectively. The sudden changes from
blue-shift to red-shift of the spectrum maximum are obvious in
these two figures; thus the central part movement can control
the spectral switch.

The spectral switches and diffracted spectrum peak shift
have been utilized in information encoding and transmission
in free space, and in that work the rms bandwidth or spatial
coherence of the incident field is used to modulate the incident
light (this can be called the internal mechanism), which is not
an easy task to perform [6]. In this paper, we propose another
scheme to achieve the spectral switch by simply moving the
central part of a double slit slightly while the properties of
the incident light source do not need any changes, which is
referred to as the external mechanism. Referring to figure 7,
it is assumed that there is a set of data as shown in the first
row of figure 7 needed to be transmitted to a position p which
makes an angle θ from the optical axis o′o. It is noted that
any specific transmitting angle at which the spectral switch can
occur always can be found through the suitable selection of the
parameters ω0, �, a, and ξ . We designate blue-shift and red-
shift as a bit of ‘1’ or ‘0’ respectively (the notations B and R
are used to indicate the blue-shift and red-shift in the row under
the data plot). Thus by properly adjusting the translation of the
central part, the blue-shift or red-shift of the spectrum’s peak
can be controlled accordingly. For the calculation example in
figure 6, it is found that, when ξ = 0.29 mm ξ = 0.31 mm,
the blue-shift (ωp = 1.08ω0) and red-shift (ωp = 0.95ω0)
can be produced respectively, where ωp is the frequency at

which the spectrum of the diffracted spectrum peaks. Under
this situation, the data can be encoded and transmitted through
the movement of the central part, as shown in the bottom row
in figure 7. Thus this method is direct and easier to implement,
and no incident light field properties need to be modulated to
control the spectral switches.

4. Conclusion

In this paper the far-field spectral anomalies of a light source
with Gaussian spectrum incident on a double slit with a
movable central part are studied. The analytical expression for
spectral intensity distribution is obtained and some numerical
examples based on it indicate the spectral switches and the
spectrum peak’s blue-or red-shift behavior. The figures also
illustrate how the observation position and movement of the
central part of the double slit affect the diffracted spectrum.
It is noted that the spectral switches can exist without the
singular points and the necessary condition is the oscillatory
behavior of the modifier function. Consequently, we offer
another scheme which can control the spectral switches by
adjusting the movement of the central part and show how it
can be applied to information encoding and transmission in
free space. This scheme has the benefit of easy implementation
without changing the properties of the light source.
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